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The p rocess  of film condensation of vapor on ver t ical  finely se r ra t ed  surfaces  is invest i -  
gated. The analysis  shows that owing to the specific conditions under which the distribution 
of the condensed film along the cooling surface is in the main affected by surface  tension, 
the effectiveness of such sur faces  may be several  t imes higher than that of plain tubes. 

It was noted in [1, 2] that owing to the presence  of surface forces  a fine wavy surface of vapor conden- 
sation resu l t s  in a distribution of the liquid film such that the coefficient of heat t r ans fe r  is considerably 
improved over that of a plane tube. 

This paper is devoted to an analysis  of the laws of vapor condensation along ver t ical  surfaces  with 
fine longitudinal ser ra t ions  of t rapezoidal  form~ Such finely se r ra t ed  surfaces  (Fig. lb) have cer ta in  ad-  
vantages over fine wavy surfaces  consisting of  two tangent semic i rc les  (Fig. la) because of wide possibi l -  
ities for al tering the shape of their  elements,  and owing to their comparat ively  simple manufacturing t ech-  
nology. 

Let us consider  the phenomena occurr ing under conditions of maximum effect of surface tension whose 
magnitude depends p r imar i ly  on the curvature  of the heat-exchange surface.  If a Weber number 
W = cr/R~p >- 10 is assumed,  the physical p rocess  may be represen ted  by the following model: 

1) If the surface forces  are  of one order  of magnitude g rea te r  than gravi ty  (W - 10), it can be 
assumed that the liquid condensed on the surface of a se r ra t ion  flows by the shor tes t  path into the r ece s s  
under the influence of the surface tension only; 

2) Because of this flow a layer  of condensate several  t imes thicker  than at the top of a se r ra t ion  
�9 tooth col lects  at the bottom of a recess .  It thus becomes possible to d i s regard  the condensation of vapor 

along a recess ,  and to consider only the hydrodynamic problem of laminar  flow of liquid in the latter~ 

The general  problem of heat t ransfer  and of the hydrodynamics  of condensate-f i lm flow along elements 
of the se r ra t ion  surface may, on these assumptions,  be reduced to two separate  problems:  first ,  the de te r -  
mination of thickness of the condensate at the ser ra t ion  top and of the velocity of its flow into the recess ,  
and, second, the determination of both the flow velocity in the r ece s s  under the action of gravi ty  and the 
zone of total flooding of the r e ce s s .  

1Q Condensation of Vapor at the Tip of a Serrationo Our analysis  of the film condensation process  of 
vapor is based on Nusse l t ' s  p remises  [3] in the theory of film condensation of steam on a ver t ical  surface:  

1) The condensate forms a continuous film on the wall, and the heat flux intensity is determined by 
the thermal  res i s tance  of that film, 

q = ~ ( t - - t )  (1~ 

2) The tempera ture  throughout the t rapezoid height is assumed constant~ This condition can be 
satisfied only within cer tain l imits,  since a decrease  of the rat io of se r ra t ion  base to height may, owing 
to the effect of finite thermal  conductivity, resu l t  in a marked t empera tu re  gradient along the height of a 
serra t ion.  

Kiev. Transla ted  f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 93- 
97, May-June,  1969. Original ar t ic le  submitted August 5, 1968. 
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Fig. 1. Variations of 
finely se r ra t ed  s u r -  
faces. 

Fig. 2. An element of ser ra t ion  
sur face  under conditions of 
vapor condensation. 

_ .  

Fig. 3. Calculation of the 
veloci ty of liquid motion in the 
r ece s s .  

! 
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Fig. 4.  Curves of the level of 
channel flooding Z in t e r m s  of 
the dimensionless  coordinate 
L for var ious  pa ramete r s  m. 

3) Tempera tu res  at the film boundaries are  equal to the t e m -  
pera tures ,  respectively,  of the wall t w and of the saturated vapor t s 
at its free surface,  with the heat t ransfer  coefficient defined by the 
inequality a = X ,/6 x .  

4) The vapor is considered to be stationary. 

The presence  of a film of condensate on a wetted wall surface 
general ly  depends on the combined action of forces  of gravity,  f r i c -  
tion, inertia, and surface  tension at the liquid boundary. 

The differential equation of motion applicable to the plane p rob -  
lem of flow of liquid into the r e c e s s  (Fig. 2) considered here  is 
writ ten as 

tt 

' % - a 7 - +  wv-~y - p 3 7 +  + v \ O ~ T ~  O~-~T/ (1.2) 

In light of the above statements let us consider  the laminar flow 
of condensate along the protruding par t  of a ser ra t ion under the action 
of sur face  tension and fr ict ion only. This leads to a considerable 
simplification of Eq. (1.2) which becomes 

t a p ,  o0-% (1.3) 
- -  ,a O x  T Oy2  ~ 0 

After integration we obtain 

I Op 
wv-- 2Ft Ox Y~ + CxY -[ C~ 

From the boundary conditions for the flow of condensate in the 
film we have 

y = O, w v =  O, C~= 0 

g -  6 (x), Oy ~ 0 ,  C , ~ - -  ~t Ox x 

For the velocity field in a c ross  section of the film at distance 
x f rom the se r ra t ion  tip we obtain the following equation: 

I a p ( ~ _ 6 x y  ) (1.4) 

The condensate ra te  of flow over  the se r ra t ion  tip, averaged 
over the film c ross  section, is 

5 

1 w d y ~  

0 

( 1 , 5 )  

The condensate ra te  of flow ac ross  a section at x is 

~'6xa Op 

The ra te  of condensate flow over a se r ra t ion  through a section 
at distance dx downstream of the flow is increased by 

riG=-- ~ ax ~x~d~x (1.6) 
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This increase  is due to condensation of vapor.  Substituting dQ = rdG x into Eq. (1.1), we obtain 

)4 
(1.7) 

Equating the r ight-hand sides of (1.6) and (1.7), we derive the equation 

Op 
t~ -~x 5x3 dS x ~ "7 (ts - -  tw) dx 

which after integration yields 

( J ~ ( t -  G)_x )'/, (1.8) 
8x=\  p r l O p / O x  I 

which is the local thickness of film on the la teral  surface of the t rapezoid at distance x from the ser ra t ion  
tip. Since the p res su re  gradient  0 p/0x is negative (the r e c e s s  is a region of lower pressure) ,  its absolute 
value is used in Eq. (1.8). 

If we define (3p/0x) as the rat io of p re s su re  drop f rom tip to r e c e s s  

+-~T) 

to the total path of liquid flow along a serrat ion,  which depends on the extent of local flooding of the r ece s s  
(Fig. 2) and is 

h--A 
C08 (~ 

we find that 

O p  Ap s cos q~ 
5b- ~z ~ /~ (h-- A) 

(1.9) 

It is assumed here  that at the tip R 1 ~ R 6 and in the r e c e s s  R~ --- ~. 

Substituting the derived value of 0p/0x into Eq. (1.8), we obtain 

2. Motion of Condensate in the Recess .  Let us determine the interdependence between the ra te  of  
condensate flow over the se r ra t ion  into the r e c e s s  and the velocity of fluid motion along the latter,  as it is 
being gradual ly filled. We confine our considerat ion to the case  of laminar  flow in the r ece s s ,  and assume 
the absence of vapor  condensation in it. It should be, f i rs t  of all, noted that contact angles 0 of surface 
wetting by the liquid have an appreciable effect on the shape of the free surface of the liquid flowing in the 
r ecess ,  which may be dimensionally close to a capil lary,  and consequently on the magnitude of the wetted 
pe r imete r  and the rate  of flow. Owing to the wetting effect a concave meniscus  is formed in the r e c e s s  
filled by a layer  of liquid to a height of A (Fig. 2), and this makes the liquid r i se  by a cer ta in  additional 
height A,-A depending on the wetting angle. 

F rom Fig. 2 it can be found by conventional geometry  that 

A' ~--- ~A, ~ =  (1 t --sin0 \% ( 2 o l )  -~ t.3 ~ t g  T) 

In Fig. 3 is shown a ha l f -sec t ion  of the r e c e s s  lying between the axis of symmet ry  and the t rapezoid 
flank filled with liquid to a cer ta in  level &' with the effect of surface wetting taken into consideration. For 
simplicity, the curve  of the film upper surface is replaced by a s traight  line A ' B '  at a cer tain angle 
0 ' ~ 0 - q~ + fi to the flank with fi on the order  of 10-20 ~ depending on the conditions of wetting. 
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L e t  us v i s u a l i z e  the  m o t i o n  of the  f lu id  f i l m  in the  v e r t i c a l  d i r e c t i o n  Ol in t h i s  h a l f - c h a n n e l  a s  a 
c e r t a i n  f a m i l y  of p l a n e - p a r a l l e l  f lows a long  the  f lank  of  the  t r a p e z o i d  with  the  width O ' B '  of t he  s t r e a m  
v a r y i n g  with the  c o o r d i n a t e  l of  f lood ing  and the  f i lm  t h i c k n e s s  5 * v a r y i n g  o v e r  the  width of  t h i s  s t r e a m .  
It  i s  a s s u m e d  tha t ,  for  e x a m p l e ,  a t  a c e r t a i n  po in t  x *  (the c o o r d i n a t e  l of f looding i s  f ixed) t h e r e  i s  in 
s e c t i o n  MM'  a p l a n e  f low with  f i l m  t h i c k n e s s  equa l  5 *. 

We r e s t r i c t  our  c o n s i d e r a t i o n  of  th i s  m o d e l  of f low to the  c a s e  in which the d i m e n s i o n  a (ha l f -wid th  
of  the  r e c e s s  bot tom)  is  s m a l l  and,  c o n s e q u e n t l y ,  i t s  e f f ec t  on the  l iqu id  f low p a t t e r n  in the  channe l  m a y  be  
n e g l e c t e d .  

F o r  a p l a n e  l a m i n a r  f low of l i qu id  a long  a we t t ing  s u r f a c e  N u s s e l t  had  e s t a b l i s h e d  the  w e l l - k n o w n  
p a r a b o l i c  l aw for  t h e  v e l o c i t y  d i s t r i b u t i o n  a c r o s s  t he  f i lm  t h i c k n e s s .  We  a s s u m e  tha t  in e v e r y  c r o s s  
s e c t i o n  ( a s s u m e d  n o r m a l  to t he  channe l  s i d e  wal l )  p r e v a i l s  i t s  own law of s e m i p a r a b o l i c  d i s t r i b u t i o n  of 
v e l o c i t y  u a c r o s s  the  t h i c k n e s s  of  f i l m  ( f r o m  z e r o  a t  t he  wa l l  to a c e r t a i n  l i m i t  v a l u e  at  the  ax i s  of s y m -  
m e t r y  of  the  channe l  depend ing  on loca l  6* ), which in ou r  no ta t ion  i s  of  the  f o r m  

u(y, x*)= pcos(r i ) I 5 ,  (x,)y - ~ l  (2.2) 

The  m e a n  flow r a t e  of l iqu id  a c r o s s  the  r e c e s s  i s  

t 

H e r e  F i s  "the c r o s s - s e c t i o n a l  a r e a  of l iqu id  in  the  channe l .  

F r o m  th i s ,  us ing  the no ta t ion  

h tg ~ a (2.4) 
z --~- ~ - ,  n : t g  (O_(p +~) , m--~htgq~ 

and i n t e g r a t i n g  ( for  m -< 0.5),  we ob t a in  

~-p cos (z, t) tg2 (ph~ (z + m) 2 
<u(y, x*)>= 6 cos~ q~(t + n) ~ 

(2.5)  

The  v a l u e  of  m -< 0.5 was  c h o s e n  to  a c c o r d  with  the  p r e v i o u s l y  i n t r o d u c e d  l i m i t a t i o n  of the  d i m e n s i o n  
a of  the  t r a p e z o i d .  The  flow r a t e  of l iqu id  a c r o s s  ha l f  of  the  r e c e s s  i s  

~4 cos (g, l) tg 3 qvp~h~ (z 4- m) 4 
Gt := 9uF = t2 cos 4 q~ (t A- n) ~ l x 

The  v a r i a t i o n  o f  the  f low r a t e  i s  

(2.6) 

dGl = ~4 cos (~, l) tgS~pzh4 (z + m) 3 dz 
3cos~ ~ (t § n)3,~ 

(2.7) 

T h e  change  of  f low r a t e  a long  a s e c t i o n  d l  of  the  f looded  pa th  i s ,  on the  o t h e r  hand,  due to the  inflow 
of  c o n d e n s a t e  f r o m  the  s u r f a c e  of  a s e r r a t i o n  at  a r a t e  

dGt = iwy ~ phx~ (2.8) 
o o . 

H e r e  <Wy > and 5 x a r e ,  r e s p e c t i v e l y ,  t he  m e a n  v e l o c i t y  (1.5) and  the  t h i c k n e s s  of the  l iqu id  f i l m  
(1.10) runn ing  off a s e r r a t i o n  at  the  b o u n d a r y  of the  f looding  l a y e r .  

I n t r o d u c i n g  the  concep t  of d i m e n s i o n l e s s  c o o r d i n a t e  of  pa th  L n o r m a l i z e d  with r e s p e c t  to H (In), 

l 0.35~ 4 cos (g, i) tga ~pT/'h'/2R~'/'r~h 
L = H - -  (2,9) 

H ' (i § n) 3 cos~/~<:V'~h)~ 3/4 (tstw) ~t* 

we d e r i v e  fo r  the  f low of  l iqu id  in the  r e c e s s  the  fo l lowing d i f f e r e n t i a l  equa t ion :  

(z § m)3 
] / l - - z  dz=dL,  m~0.5 (2.10) 

which  i s  r e a d i l y  i n t e g r a b l e  
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Cl ( i - - z )  ' i~-c2  ( i - - z )  3 /~+c~( l - z )  ~ i ~ - Q  ( i - - z )  ' i ~ + B = L ,  rn.%05 (2.11) 

C1= 2@ 6m@ 6m 2 @ 2m a 
C2--2/~(3@ 6m-]-3m 2) 
C~= 2/5(3@ 3m) 
C4 = 2/7 

The constant  of integration is  de t e rmined  by the boundary condit ion (for l = 0) as  

B = -- C~ + C~-- C3 + C4 (2.12) 

Equation (2.11) makes  it poss ib l e  to de t e rmine  the d i s t r ibu t ion  pa t t e rn  of the th ickness  of the con-  
densa te  f i lm in a flow along the v e r t i c a l  su r face  of a r e c e s s  of t r apezo ida l  form,  and to find the coord ina te  
l of the c r i t i c a l  point at which the groove becomes  comple te ly  flooded by the l iquid and beyond which the 
p r e s e n t  ana ly t ica l  inves t iga t ion  no longer  appl ies .  

A number  of cu rves  Z = f ( L )  co r respond ing  to Eq. (2.11) is  shown in Fig.  4 in d imens ion le s s  c o o r -  
dinates .  These  r e p r e s e n t  va r i a t i on  of the r e l a t i v e  f i lm th ickness  z in t e r m s  of coord ina te  L depending on 
the ~form r e s i s t a n c e "  m which depends on the r e l a t ion  between the bas ic  geome t r i c  d imens ions  of the 
p rof i l e  se lec ted  for the vapor  condensing surface~ 

3. The Coefficient  of Heat  T r a n s f e r .  The de te rmina t ion  of the mean coeff ic ient  of hea t  t r a n s f e r  over  
a ce r t a in  length L 0 -< L .  ( L .  is  the coord ina te  of the point at  which the r e c e s s  is  comple te ly  flooded) does 
not, obviously,  neces s i t a t e  a ca lcula t ion  of heat  r e m ova l  over  the whole p e r i m e t e r  of the tube, s ince  i t  is  
suff icient  to inves t iga te  a s ingle  e l e m e n t a r y  sect ion of a width equal to the s e r r a t i o n  pitch S. 

F o r  given condit ions of the p r o c e s s  and geomet ry  of the su r face  the coeff ic ients  H and m a r e  f i r s t  

d e t e r m i n e d  f rom (2.9) and (2.4), r e spec t i ve ly ,  and f rom Fig.  4 or ,  a l t e rna t ive ly ,  the level  z of r e c e s s  f lood-  
ing at  L = L 0 is  de t e rmined  f rom Eq. (2.11). Having found the level  of flooding z, the flow r a t e  of l iquid 
through the end sect ion of the r e c e s s  

G =-0'167~4 cos (g, l) tgSr ~ (z + rn)4 (3~ 1) 
(1 -t- n) 3 cos~(p~ 

is found with the use of formula  (2.6), which gives  the flow r a t e  through half  of the r e c e s s ,  

The heat  of vapor  condensat ion Q = Gr is  t r a n s m i t t e d  to the wall  through the l iquid f i lm in acco rdance  
with the averaging  [formula] of the form 

Q - a* (t~ - t~) F~ (3.2) 

H e r e  F s is the total  su r face  a r e a  of hea t  exchange of an e lement  of width s. 

F r o m  this  the sought heat  t r a n s f e r  coeff ic ient  is  de t e rmined  as  

~* _ ( 3 . 3 )  
(t s -- tw) F s 

The above analy t ica l  inves t iga t ion  of the laws governing f i lm condensat ion of vapor  on f inely s e r r a t e d  
s u r f a c e s  p e r m i t s  us to a s s e s s  the e f fec t iveness  of such su r f aces  in the  domain r e s t r i c t e d  by the r e q u i r e -  
m e a t s  (W ~ 10; m - 0~ speci f ic  to the se l ec t ed  phys ica l  model  of th is  phenomenon. 

P r e l i m i n a r y  ca lcu la t ions  of hea t  t r a n s f e r  through ce r t a in  e a s i l y  p roduced  v a r i a n t s  of s e r r a t e d  s u r -  
f aces  show that  the hea t  t r a n s f e r  coeff ic ient  for these  is  1.5-2 t i m e s  h igher  than for plane su r faces ,  while 
the total  hea t  r emova l ,  owing to the i n c r e a s e d  su r face  a r e a  by the addit ion of s e r r a t i o n s ,  exceeds  that  of 
p lane tubes by a fac tor  of 4-6. 
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